

Ques.

A uniform rod of length R and mass M is freely to rotate about a horizontal axis passing through hinge P as is figure. First it is taken aside such that it becomes horizontal and then released. At the lowest point the rod hits the block B of mass m and stops. If ratio of mass of rod M to the mass of block m such that the block B completes the circle \sqrt{x} then x is. Neglect any friction.

Minimum velocity required by block \emph{m} to complete the motion in $\sqrt{5gR}$

conserving mechanical energy

$$\frac{1}{2}I\omega^2 = Mg \times \frac{R}{2}$$

$$\Rightarrow \omega = \sqrt{\frac{MgR}{I}}$$

conserving angular momentum w.r.t.
$$\emph{P}$$
 before and after collision.
$$I\omega = m \cdot R = \sqrt{5gR}$$

$$I \cdot \sqrt{\frac{MgR}{I}} = mR\sqrt{5gR}$$
 Putting $I = \frac{ML^2}{3} = \frac{MR^2}{3}$ (since $\textit{L} = \textit{R}$)
$$\frac{M}{m} = \sqrt{15}$$

The correct answer is: 15